Classical photoreceptors regulate melanopsin mRNA levels in the rat retina.
نویسندگان
چکیده
Recent studies have demonstrated that melanopsin is a key photopigment in the mammalian circadian system. This novel opsin is exclusively expressed in retinal ganglion cells that are intrinsically sensitive to light, perhaps responding via a melanopsin-based signaling pathway. Previous investigations using transgenic mice have also demonstrated that ablation of the classical photoreceptors and of melanopsin prevents entrainment of several circadian rhythms, thus demonstrating that these photoreceptors are necessary and sufficient for circadian photoreception. In this study, we investigated the effect of photoreceptor degeneration on melanopsin mRNA regulation in RCS/N-rdy rats (Royal College of Surgeons rats with a defect in the retinal dystrophy gene). We used animals at postnatal day 21 (P21), P33, P45, and P60. At P60 degeneration of the retina in RCS/N-rdy has advanced to the point where the majority of the photoreceptors have degenerated. Our data indicate that melanopsin mRNA levels were rhythmic in light/dark cycle and in constant darkness in congenic controls (RCS/N-rdy+) and in RCS/N-rdy at P21 (i.e., before the degeneration of the photoreceptors). On the other hand, in RCS/N-rdy at P60, melanopsin mRNA levels were greatly reduced (<90%) and not rhythmic. Photoreceptor degeneration did not affect the expression of pituitary adenylate cyclase-activating polypeptide mRNA (a marker for melanopsin-containing ganglion cells). Our results suggest that classical photoreceptors (rods and cones) regulate the expression of melanopsin mRNA in the rat. Because RCS/N-rdy rats are a model for studies on retinitis pigmentosa in human, our data may provide an important insight on melanopsin function in patients affected by retinitis pigmentosa.
منابع مشابه
Vision: Melanopsin as a Novel Irradiance Detector at the Heart of Vision
A recent study defines a novel role of melanopsin-expressing ipRGCs, showing that these inner retinal photoreceptors function as retinal irradiance detectors and provide a local measure of luminance to regulate functional adaptation in the mammalian retina.
متن کاملThe photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract.
Mammalian circadian rhythms generated in the hypothalamic suprachiasmatic nuclei are entrained to the environmental light/dark cycle via a monosynaptic pathway, the retinohypothalamic tract (RHT). We have shown previously that retinal ganglion cells containing pituitary adenylate cyclase-activating polypeptide (PACAP) constitute the RHT. Light activates the RHT via unknown photoreceptors differ...
متن کاملMelanopsin Regulates Visual Processing in the Mouse Retina
The discovery of melanopsin-dependent inner retinal photoreceptors in mammals has precipitated a fundamental reassessment of such non-image forming (NIF) light responses as circadian photoentrainment and the pupil light reflex. By contrast, it remains unclear whether these new photoreceptors also play a role in classical image-forming vision. The retinal ganglion cells that subserve inner retin...
متن کاملNonuniform Distribution and Spectral Tuning of Photosensitive Retinal Ganglion Cells of the Mouse Retina
Melanopsin-expressing photosensitive retinal ganglion cells (pRGCs) represent a third class of retinal photoreceptor. These cells are intrinsically photosensitive, but also receive inputs from rod and cone photoreceptors, acting as the primary sensory conduit mediating non-image-forming responses to light. Multiple subtypes of pRGC have been described in the mouse retina with characteristic mor...
متن کاملMelanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity.
The primary circadian pacemaker, in the suprachiasmatic nucleus (SCN) of the mammalian brain, is photoentrained by light signals from the eyes through the retinohypothalamic tract. Retinal rod and cone cells are not required for photoentrainment. Recent evidence suggests that the entraining photoreceptors are retinal ganglion cells (RGCs) that project to the SCN. The visual pigment for this pho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 43 شماره
صفحات -
تاریخ انتشار 2004